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In the hydrodynamics of an ideal fluid a shock wave is a geometri- 
cal surface of a discontinuity of hydrodynamieal (and thermodynamicaI) 
quantities. Introducing viscosity and thermal conductivity into the equa- 
tions of hydrodynamics changes both the pattern of origin of the shock " 
wave and also its structure. A transition layer of finite width appears 
instead of a geometrical discontinuity suxface (we note the obvious 
arbitrariness of the concept of the "width" of the transition layer, in 
view of the asymptotic nature of change of state of the medium at its 
"boundaries"). For shock waves which are weak enough the Navier- 

leads to the relation Stokes equations apply to the flow in the transition layer and thus fully 
determine its structure (see, for example, [1]). However, in the case 
of strong shock waves in a gas (by this we understand shock waves in 
which the difference of the densities at the boundaries of the transition 
layer, for example, is a quantity of the same order as the values of the 
densities themselves) an estimate of the width Ax of r_he shock wave by 
means of the Navier-Stokes equations leads to the result 

Ax ~ ,% (1) 

where Z0 is the gas molecule free path [I] (here the transport coefficients 
are expressed in terms of molecular quantities). The equations of macro- 
scopic gas dynamics are inapplicable to processes in such regions of 
space, and the width of the transition layer (1) in the macroscopic treat- 
ment shouId be set equal to zero. Thus, an estimate of the width of the 
shock wave by the methods of the kinetic theory of gases is of widespread 
interest. I3elow we make such an estimate directly with the help of 
Boltzmann's kinetic equation and his H-theorem (without having re- 
course to soIvlng the kinetic equation). 

Thus, within the framework of the phenomenologicaI description, 
a shock wave of great intensity is a geometrical surface of discontinuity 
on both sides of which the flow may be described by the equations of 
gas dynamics, containing viscosity and thermal conductivity coeffi- 
cients, but dissipative processes localized in the "surface" of discon- 
tinuity make the basic contribution to the increase of entropy of the 
medium, From the point of view of molecular kinetics these pro- 
cesses evolve in a thin layer of gas which is in a markedly noneqnili- 
brium state. First of a l l  we shall restrict ourselves to the case of a 
shock wave in a monatomic gas ("structureless" particles). Then the 
state of the gas in the layer under consideration may be described by 
means of a distribution function f(c, r, t), where r is the position vec- 
tor of the molecule, and e its velocity. The expression f(c, r, t) drde 
gives the number of molecules in the element dr of coordinate space 
and the element de of velocity space in the neighborhood of the points 

and c, respectively, 
In the case of a strong shock wave the function f varies substantial- 

ly over the width of the layer. Under these circumstances the entropy 
cannot be determined thermodynamically in the layer as a whole or in 
its elements. Moreover, we cannot apply the concept of entropy pro- 
duction here in the same form as that in which it is introduced in the 
thermodynamics of irreversible processes [2], since here a thermo- 
dynamic description of nonequitibrium systems is assumed. However, 
both these concepts may be extended to a system with a nonequilibrium 
distribution function H with the heIp of Boltzmann's H-function. The 
local value of the generalized entropy H per unit volume is determined 

by the following equation (see. for example, [3]): 

H = - - k  I In f . ]de  (2) 

IN 

where k is Boltzmann's constant and the integration is performed over 
all velocity space, 1 For an equilibrium distribution function H coincides 
with the thermodynamic entropy. 

Differentiating (2) with respect to time and representing the de- 
rivative 0ff0t by the expression from Boltzmann's equation (in the 

absence of external forces) 

0, 0j (0,) 
0 ~ - + c D T  r = ~ / -  ~ ('~) 

0ff 
0~ + div S = z. (4) 

Here (0f/0t)e is the collision integral representing the rate of 
change of the distribution function as a result of intermoIecular colli- 
sions, and the following notation has been introduced 

S =--k I e l n / , f  de (5) 

O/ z=--k f(l + ln/)(~)edc. (6) 

The interpretation of equation (4) and expressions (5) and (6) is 
obvious. The vector S is the flux density vector of the generalized 
entropy, and o is the entropy production-the change of generalized 
entropy per unit volume as a result of irreversible volume processes. 
Soltzmann showed that o is positive for nonequilibrium gases and zero 
in the case of statistical equilibrium 

a > ~  0 .  (7) 

Definition (2) and relations (4)-(7), together with the proof to 
which they give rise concerning the monotonic increase of entropy 
(generaIized) of an isolated system, comprise the content of Boltz- 
mann's H theorem. We shall use these results to evaluate the width of 

the transition layer for strong shock waves. 
We shall now consider the flow in a coordinate system relative to 

which the shock wave is motionless, and we shall take the velocity 
of the stream to be directed along the x axis. Assuming steady-state 
flow and integrating both sides of equation (4) with respect to x, we 

obtain 
+co 

.82--81= f zdx (8) 
- - o o  

where S 1 and S 2 are the values of the entropy flux density in the unper- 

turbed and perturbed media, respectively. 
The integrai on the right-hand side of equation (8) is actually de- 

termined by a certain layer of finite width Ax, and equation (8) may 

be written in the form 

S2- .81 = a * A x  (9) 

where o* is some average value of the entropy production in the layer. 

-Y-We take the molecules to be classical particles. For quantum 
particles whose motion is quasi-classical 

l ertz 3 
g = k  f In - ~  de. 

Here h is Planck's constant, m is the mass of a molecule, e is the 
base of natural logs. 
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Equation (9) should be regarded as one of the possible definitions 
of  shock wave width. We note that Ax depends on the choice of o*. 
The definition of Ax may be made  unambiguous by taking o* as equal, 
for example, to the m a x i m u m  value of the entropy production in the  
layer (o being a positive quantity equal to zero at the "boundaries" Of 
the layer). However, such refinements are unimportant for an order-of-  
magni tude est imate  of  Ax. 

We shall make  an order-of-magnitude est imate of  both sides of  
equation (9) using definitions (5) and (6). In so doing, we make use of 
the following estimates. For f we may take f < e >  s ~ u. where <c> is 

some average value of the thermal  velocity, n is the particle number 
density. We assume that the variation of such quantities as (f), <c>, n, 
e tc . ,  on passing through the layer, are quantities of  the same order as 
f. <e>, n, etc. ,  respectively (a shock wave of high intensity). Thus. 
the left-hand side of equation (9) is equal in order of  magnitude to 

S~ - -  $1 --~ k <c) In l ' l  <c) a.  (10) 

The collision integral (0f/0t)e has the form [3] 

Ix  --= l (e l ) ,  �9 J' ~ J (e ' ) ,  .f l '  = J (e l ' ) .  ( 11 )  

Here c and c I are the velocities of the molecu le  before collision, 
e '  and e i are the velocities after collision, b is the impact  parameter, 

is the angular collision parameter. When f departs appreciably from 
the Maxwetlian distribution, we obtain from (11) 

<c> ~ ro 2 <c> s (12) 

where r0 is the effective radius of  action of the intermolecular forces. 
Thus the right-hand side of equation (9) turns out to be equal in order 

of  magnitude to 
n~ (13) 

k In ] <c> <c> a < ~ r 0  ~ <c> a h x .  

Setting estimates (10) and (13) in equation (9), we obtain 

nro~Ax ~ l �9 (14) 

In order of  magnitude the left-hand side o f  (14) is equal to the 
number of  collisions experienced by a molecule  on traversing the dis- 
tance AX, Thus it follows from (14) that Ax is of the order of  the free 
path length, which agrees with est imate (1). 

In the case of  polyatomic gases relation (14) gives an est imate of  
the width of a thin transition layer with an appreciable departure from 
the Maxwellian velocity distribution (a shock "front" behind which 
there follows a relatively wide zone in which an equilibrium distribu- 
tion of energy between internal and translational degrees of  freedom 
is established). In this transition layer the gas practically behaves as 
though it were monatomic.  Thus, all relations which led to est imate 
(14) apply here, too. 

We note that the t ime for establishing equilibrium between the 
rotational and translational degrees of  freedom is usually close in order 
of  magnitude to the t ime  of free motion (somewhat exceeding it). In 
this case the width of the corresponding zone may be estimated by 
means of a natural extension of the derivation explained here. 
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